DIGITAL & ANALOG COMMUNICATION TRAINERS

Model Number : GOTT-DAC-100

 Design and implementation of RF oscillators and filters. Design and implementation of analog AM and FM modulation and demodulation. Design and implementation of digital and analog converter. Design and implementation of ASK and FSK modulation and demodulation. Design and implementation of PSK and QPSK modulation and demodulation. 				
 FEATURES To understand basic the Design and implementa demodulator. 	 Design and implementation ability training of digital mod ation ability training of analog modulator and To understand the applications of balanced modulator cire 	ulator and rcuit.		
RF OSCILLATOR & SECOND	ORDER FILTER CIRCUITS DESIGN	CODE 100-101		
	 RF Oscillator Circuits Design Experiment 1: Colpitts Oscillators Circuit (Oscillation Frequency: 1 MHz ~ 10 MHz) Experiment 2: Hartley Oscillators Circuit (Oscillation Frequency: 500 kHz ~ 2 MHz) Second Order Filter Circuits Design Experiment 1: Second Order LPF Circuit (Low-pass -3 dB Frequency: 1 kHz ~ 10 kHz) Experiment 2: Second Order HPF Circuit (High-pass -3 dB Frequency: 800 Hz ~ 8 kHz) Experiment 3: Second Order BPF Circuit (Center Frequency: 6 kHz; Bandwidth: 10kHz) 			
AMPLITUDE MODULATION	& DEMODULATION CIRCUIT DESIGN	CODE 100-102		
	 Amplitude Modulation Circuit Design Experiment 1: Amplitude Modulation Circuit (Carrier Signal: 500 kHz ~ 3 MHz; Audio Signal Frequency: 1 Amplitude Demodulation Circuit Design Experiment 1: AM Diode Detection Circuit (Carrier Signal: 200 kHz ~ 300 kHz; Audio Signal Frequency: 1 kHz) Experiment 2: AM Product Detection Circuit (Carrier Signal: 500 kHz ~ 3 MHz; Audio Signal Frequency: 1 kHz; Modulation Index: 50 %) 	kHz ~ 3 kHz) kHz ~ 3 kHz ~ 3		
FREQUENCY MODULATION	N & DEMODULATION CIRCUIT DESIGN	CODE 100-103		
	 Frequency Modulation Circuit Design Experiment 1: The Specification Measurement of MC1648 VCO (Oscillation Frequency: 2 MHz ~ 3 MHz) Experiment 2: MC1648 FM Circuit (Carrier Signal: 2.8 MHz; Audio Signal Frequency: 3 kHz ~ 8 kHz) Experiment 3: The Specification Measurement of LM566 VCO (Oscillation Frequency: 1 kHz ~ 30 kHz) Experiment 4: LM566 FM Circuit (Carrier Signal: 20 kHz; Audio Signal Frequency: 1 kHz ~ 5 kHz) Frequency Demodulation Circuit Design Experiment 1: The Specification Measurement of LM565 PLL (Nature Frequency: 0.6 kHz ~ 77 kHz; Phase Locked Range: 1.1 kHz ~ 3.9 kHz; Phase Caught Range: 1.2 kHz ~ 3.8 kHz) Experiment 2: The Specification of Voltage and Frequency for LM565 PLL (Input Signal Frequency: 0.5 kH 23.5 kHz; Output Voltage: 3V ~ 4.5V) Experiment 3: LM565 Phase Locked Loop Circuit (Nature Frequency: 2 MHz; Audio Signal Frequency: 1 kHz 	z ~ Hz ~ 3 kHz) ~ 3 kHz)		

DIGITAL & ANALOG COMMUNICATION TRAINERS

Model Number : GOTT-DAC-100

DIGITAL & ANALOG COMMUNICATION TRAINERS

Model Number : GOTT-DAC-100

QPSK MODULATION & DEMODULATION CIRCUIT DESIGN		
		100-109
	 QPSK Modulation Circuit Design Experiment 1: Bit-splitter Circuit (Data Rate: 100 bps ~ 1000 bps) Experiment 2: QPSK Modulation Circuit (Carrier Signal: 20 kHz; Data Rate: 1000bps) 	
	QPSK Demodulation Circuit Design	
	• Experiment 1. Signal-square and FLE Circuit (Carrier Signal. 20 Km2, Data Rate. 1000 bps)	

Experiment 2: QPSK Demodulation Circuit (Carrier Signal: 20 kHz; Data Rate: 1000 bps)

DC POWER SUPPLY & FUNCTION GENERATOR (OPTIONAL ITEM)

CRUTT

DC Power Supply

- Tripple Bipolar Voltage Outputs
- DC 0 +/-15V
 - O DC +/-5V
 - O DC +/-12V
- Constant & variable Voltage Operation
- Low Ripple and Noise

Function Generator

- Two Signals Output Ports
- Frequency Range :
 - FG (I): 0 10Hz FG (
 - OHz
 FG (II): 0 100Hz

 O0kHz
 0 1kHz
 - 0 100kHz
 0 1kHz

 0 1kHz
 0 10kHz

 0 10kHz
 0 100kHz

 0 100kHz
 0 100kHz
- Waveform : Sine, Triangle, Square, TTL Pulse
- Amplitude : 10Vpp
- Built-in-6-Digit Frequency Counter
- Two Large 0.5" LED Display Overload Protection

Manuals:

- (1) All manuals are written in English
- (2) Model Answer
- (3) Teaching Manuals

General Terms:

- (1) Accessories will be provided where applicable.
- (2) Manuals & Training will be provided where applicable.
- (3) Designs & Specifications are subject to change without notice.
- (4) We reserve the right to discontinue the manufacturing of any product.

Warranty:

2 Years

ORDERING INFORMATION :

ITEM	MODEL NUMBER	CODE
DIGITAL & ANALOG COMMUNICATION TRAINER	GOTT-DAC-100	100-100
DC POWER SUPPLY & FUNCTION GENERATOR	GOTT-DC POWER SUPPLY & FUNCTION GENERATOR	500-107

* Proposed design only, subject to changes without any notice.

CODE 507-107